

MIERNIK ENERGII 3-FAZ. Z MID 100A NMID30-2 V1

1 Wstęp

Niniejszy dokument zawiera instrukcje obsługi, konserwacji i instalacji. To urządzenie mierzy i wyświetla charakterystyki sieci jednofazowej dwuprzewodowej (1P2W), trójfazowej trójprzewodowej (3P3W) i trójfazowej czteroprzewodowej (3P4W). Parametry pomiarowe obejmują napięcie (V), prąd (A), częstotliwość (Hz), moc (kW / KVA / KVAr), współczynnik mocy (PF), energię pobieraną, oddawaną i całkowitą (kWh / kVArh). Urządzenie mierzy również maksymalny prąd i moc Demand mierzone w ustalonych okresach do 60 minut

Jest również wyposażony w pełną komunikację z wbudowanymi wyjściami Pulse i RS485 Modbus RTU, konfiguracja jest chroniona hasłem

To urządzenie jest bezpośrednio podłączane do 10(100)A Konfiguracja jest chroniona hasłem.

1.1 Parametry urządzenia

NMID30-2 V1 może mierzyć i wyświetlać:

- Napięcie między fazą a neutralnym i %THD (całkowite zniekształcenie harmoniczne) wszystkich faz
- Częstotliwość linii
- Prąd, Maksymalny prąd Demand i %THD prądu wszystkich faz
- Moc, maksymalną moc Demand i współczynnik mocy
- Energię pobieraną, oddawaną, i całkowitą energię czynną · Energie pobierana, oddawana, i całkowita energie bierna

Urządzenie posiada menu konfiguracji chronione hasłem dla następujących funkcji: Zmiana hasła

- Konfiguracja układu 1F2P. 3F3P. 3F4P
- Czas interwału Demand
- Reset pomiarów Demand
- · Wyjście impulsowe czas trwania

1.2 Interfejs szeregowy RS485 – Modbus RTU

Port szeregowy RS485 z protokołem Modbus RTU zapewniający zdalne monitorowanie i sterowanie urządzeniem. Dostępne są ekrany konfiguracji do konfiguracji portu RS485. Dotyczy rozdziału 4.8. Lista rejestrów oraz opis protokołu Modbus znajduje się w osobnej instrukcji dostępnej na stronie internetowej www.lumel.com.pl

1.3 Wyjście impulsowe

Dwa wyjścia impulsowe, które można ustawić dla energii czynnej (kWh) lub energii biernej (kVArh).

2 Ekrany startowe

W trybie konfiguracji jest to przycisk "Enter" lub "Prawo".

3.1 Napięcie i prąd

Każde kolejne naciśnięcie 📈 przycisku wybiera nowy parametr

^{L1} 000. ^{L2} 000. ^{L3} 000.	0 v 0 0	Napięcia między fazą a przewodem neutralnym.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0	Prąd na każdej fazie.	
L' L ² L ³ 0 0.0	0 0 0	%THD napięcia między fazą a przewodem neutralnym.	
L ¹ L ² L ³ U 0.0	0 1%THD	%THD prądu dla każdej fazy.	

3.2 Częstotliwość i współczynnik mocy oraz Demand

Każde kolejne naciśnięcie 🗾 przycisku wybiera nowy zakres:		
Częstotliwość i współczynnik mocy (całkowity).		
L' L ² L ³ U.999 L ³ U.999 PF	Współczynnik mocy każdej fazy.	
0.000 ^{kw} S	Maksymalna moc Demand.	
L ¹ O.O O O L ² O.O O O L ³ O.O O O	Maksymalny prąd Demand.	

3.3 Moc

Każde kolejne naciśnięcie 📭 przycisku wybiera nowy zakres:

L ¹ L ² L ³ D.D D D D.D D D	Chwilowa moc czynna w kW.
L ¹ L ² L ³ D.D D D kVAr	Chwilowa moc bierna w kVAr.
L ¹ L ² L ³ 0.000 kVA	Chwilowe Volt-Amps w KVA.
	Całkowita kW, kVArh, kVA,

0000 ^{kWh}	Energia czynna całkowita
≥ 03 1.4	w kWh.
0000	Energia bierna całkowita
≥000.0 ^{kVArh}	w kVArh.

Należy pamiętać, że rejestr to 9999999.9 wyświetlane w dwóch wierszach.

4 Konfiguracja

Aby wejść w tryb konfiguracji, przytrzymaj przycisk 🗾 przez 3 sekundy, aż pojawi się ekran hasła.

Aby wyjść z trybu konfiguracji, naciskaj przycisk 📈 wielokrotnie, aż ekran pomiaru zostanie przywrócony.

4.1 Metody wprowadzania ustawień

Niektóre pozycje menu, takie jak hasło i przekładnik prądowy wymagaja wpisania czterocyfrowego numeru, podczas gdy inne, takie jak system zasilania, wymagają wyboru z opcji menu.

4.1.1 Wybór opcji menu

1. Użyj przycisków 🏴 i P aby przewinąć różne opcje menu

- 2. Naciśnij 📑 aby potwierdzić wybór
- 3. Jeśli element miga, można go ustawić za pomocą przycisków ^{MD▲} PFHz i P ▼
- 4. Po wybraniu opcji z bieżącej warstwy naciśnij E aby potwierdzić wybór. Pojawi się wskaźnik SET.
- 5. Po zakończeniu ustawiania parametrów naciśnij 📈 aby powrócić do wyższego poziomu menu. Wskaźnik SET zostanie usunięty i będziesz mógł użyć przycisków 📑 do dalszego wyboru menu.
- 6. Po zakończeniu wszystkich ustawień naciśnij kilkakrotnie zva aż ekran pomiaru zostanie przywrócony.

4.1.2 Procedura wprowadzania liczb

Podczas konfigurowania urządzenia niektóre ekrany wymagają wprowadzenia liczb. W szczególności przy wejściu do sekcji konfiguracji należy wprowadzić hasło. Cyfry są ustawiane indywidualnie, od lewej do prawej. Procedura jest następująca:

- 1. Bieżąca cyfra do ustawienia miga, a następnie można ją ustawić za pomocą przycisków 🎤 i P
- 2. Naciśnij E: aby potwierdzić ustawienie każdej cyfry. Wskaźnik SET pojawia się po ustawieniu ostatniej cyfry
- 3. Po ustawieniu ostatniej cyfry naciśnij 📈 aby wyjść z procedury ustawiania numeru. Wskaźnik SET zostanie usuniety.

4.2 Zmiana hasła

	582 PR55 1000	Użyj 📴 i P aby wybrać opcję zmiany hasła.
	582 PR55 1000	Naciśnij procedurę zmiany hasła. Pojawi się nowy ekran hasła z pierwszą migającą cyfrą.
Г		Użvi ≜ i ₽ abv

4.4 System zasilania

Domyślne ustawienie urządzenia to układ 3 fazowy 4 przewodowy (3F4P).

Naciśnij 💹 aby wyjść z procedury wyboru układu i powrócić do menu. SET zniknie i nastąpi powrót do głównego menu konfiguracji

4.5 Wyjście impulsowe

Ta opcja pozwala skonfigurować wyjście impulsowe. Wyjście można ustawić tak, aby dostarczało impuls dla określonej ilości energii czynnej lub biernej. Sekcja ta służy do ustawiania wyjścia impulsowego przekaźnika — Jednostki: kWh, kVArh

Po zakończeniu procedury wprowadzania naciśnij 🗾 aby potwierdzić ustawienie i naciśnij yna aby powrócić do głównego menu konfiguracji

4.5.1 Stała impulsowania

Można skonfigurować wyjście impulsowe, aby odpowiadało określonej ilości pobieranej lub oddawanej energii. Ten parametr można również ustawić na wykorzystanie energii czynnej (kWh) lub energii biernej (kVarh).

Należy pamiętać o ograniczeniach, które należy uwzględnić przy ustawianiu wyjścia impulsowego. Polega to na tym, że wyjście przekaźnikowe może impulsować tylko 2 razy na sekundę.

ienie impulsów: 1 impuls na 0.01(10W) / 0,1(100W) / 1 (1kWh) / 10(10kWh) / 100(100kWh) /1000 (1000kWh)

* Po krótkim opóźnieniu ekran wyświetli pomiary energii czynnej.

3 Pomiary

Przyciski działają w następujący sposób:

Wybiera ekrany wyświetlania napięcia i prądu. W trybie konfiguracji jest to Przycisk "Lewo" lub "Powrót"

Wybór ekranów częstotliwości i współczynnika mocy. W trybie konfiguracji jest to przycisk "Do góry"

Naciśnij 💹 aby wyjść z procedury ustawiania numeru i powrócić do menu konfiguracji. SET zostanie usunięty

4.3 DIT (Czas Integracji Demand)

Ustawia okres (w minutach), w którym odczyty prądu i mocy są zintegrowane dla pomiaru maksymalnego demand. Opcje to: wył., 5, 10,15 30,60 minut.

Z menu ustawień użyj przycisków 🎬 i P aby wybrać opcję DIT. Ekran pokaże aktualnie wybrany czas integracji.

Po zakończeniu procedury wprowadzania naciśnij 💽 aby potwierdzić ustawienie i naciśnij 📈 aby powróci głównego menu konfiguracji.

4.5.2 Czas trwania impulsu

Monitorowana energia może być czynna lub bierna, a szerokość impulsu może być wybrana jako 200, 100 lub 60ms.

Z menu ustawień użyj przycisków przycisków z i p aby wybrać opcję Szerokości impulsu.

Użyj przycisków E aby wybrać szerokość impulsu. Po zakończeniu procedury wprowadzania naciśnij E aby potwierdzić ustawienie i naciśnij VA aby powrócić do głównego menu konfiguracji

4.6 Komunikacja

Port RS485 może być używany do komunikacji przy użyciu protokołu Modbus RTU. W przypadku Modbus RTU parametry są wybierane z panelu przedniego.

4.6.1 Adres RS485

Po zakończeniu procedury wprowadzania naciśnij przycisk ez) aby potwierdzić ustawienie i naciśnij przycisk war aby powrócić do głównego menu konfiguracji.

4.6.2 Szybkość transmisji

Po zakończeniu procedury wprowadzania naciśnij 💽 aby potwierdzić ustawienie i naciśnij Mał aby powrócić do głównego menu konfiguracji

4.6.3 Parzystość

4.6.4 Bity stopu

4.8 Konfiguracja podświetlenia

Nasz podświetlany wyświetlacz o wysokiej rozdzielczości można ustawić na czas, który najlepiej odpowiada klientowi końcowemu.

Naciśnij 토 aby potwierdzić ustawienie i naciśnij 📈 aby powrócić do głównego menu konfiguracji.

5 Specyfikacje

5.1 Mierzone parametry

Urządzenie może monitorować i wyświetlać następujące parametry układu jednofazowego dwuprzewodowego (1F2P), trójfazowego trójprzewodowego (3F3P) lub trójfazowego czteroprzewodowego (3F4P).

5.1.1 Napięcie i prąd

- Napięcia między fazą a neutralnym od 100 do 289V a.c. (nie dotyczy układu 3-faz. 3-przew.).
- Napięcia międzyfazowe od 173 do 500V a.c. (tylko w układzie 3-faz.).
- Procent całkowitego zniekształcenia harmonicznego napięcia (%THD) między każdą fazą a neutralnym (nie dotyczy układów 3F3P). • Procent THD% napięcia międzyfazowego (tylko w układzie 3-faz.).
- %THD prądu dla każdej fazy.

5.1.2 Współczynnik mocy, częstotliwość i wartości maksymalne Demand

- Częstotliwość w Hz
 Moc chwilowa:
- Moc 0 do 99999 W Moc bierna 0 do 99999 Var
- Moc pozorna chwilowa 0 do 99999 VA
- Maksymalna moc demand od ostatniego resetu Demand Współczynnik Mocy
- Prąd neutralny maksymalny Demand od ostatniego zresetowania Demand (tylko w układzie 3-faz.)

5.1.3 Pomiary energii

····· · · · · · · · · · · · · · · · ·	
 Energia czynna pobierana/oddawana 	0 do 999999,9 kWh
 Energia bierna pobierana/oddawana 	0 do 999999,9 kVArh
 Energia czynna całkowita 	0 do 999999,9 kWh
 Energia bierna całkowita 	0 do 999999 9 k\/Arh

5.2 Wejścia pomiarowe

Wejścia napięciowe przez 4-torowe złącze stałe o przekroju przewodu linkowego 35mm². Jednofazowy dwuprzewodowy (1F2P), trójfazowy trójprzewodowy (3F3P) lub trójfazowy czteroprzewodowy (3F4P) niezbalansowany. Częstotliwość linii mierzona od napięcia L1 lub napięcia L3.

5.3 Dokładność Nar

 Napięcie 	0,5% zakresu maksimum
• Prąd	0,5% wartości nominalnej
 Częstotliwość 	0,2% średniej częstotliwości
 Współczynnik mocy 	1% jedności (0,01)
 Moc czynna (W) 	± 1% zakresu maksimum
 Moc bierna (VAr) 	± 1% zakresu maksimum
 Moc pozorna (VA) 	± 1% zakresu maksimum
 Energia czynna (Wh) 	Klasa 1 IEC 62053-21
 Energia bierna (VARh) 	± 1% zakresu maksimum
 Całkowite zniekształcenia 	1% do 31. harmonicznej
harmoniczne	
 Czas odpowiedzi wejścia 	1s, zwykle, do> 99% odczytu
	koncowego, przy 50 Hz.

5.5 Interfejsy do monitorowania zewnętrznego

- Dostępne są trzy interfejsy · Kanał komunikacyjny RS485, który można zaprogramować dla protokołu Modbus RTU
- · Wyjście przekaźnikowe wskazujące energię mierzoną w czasie rzeczywistym (konfigurowalne)
- Wyjście impulsowe 400imp/kWh (nie konfigurowalne)

Konfiguracja Modbus (szybkość transmisji itp.) i przypisania wyjść przekaźnikowych impulsowych (kW/kVArh, pobierana/ oddawana itd.) są konfigurowane za pomocą ekranów konfiguracji

5.5.1 Wyjścia impulsowe

Opto-złącze z bezpotencjałowym stykiem SPST-NO (Obciążalność prądowa 5-27VDC / Max wejście prądowe: Imin 2mA oraz Imax 27mA DC). Wyjście impulsowe można ustawić tak, aby generowało impulsy reprezentujące kWh lub kVArh. Stała może być ustawiona tak by generowano 1 impuls na:

0,01 = 10 Wh/VArh

5.7 Środowisko

Temperatura pracy	-25°C do +55°C*
Temperatura przechowywania	-40°C do +70°C*
Wilgotność względna	0 do 95%, bez kondensacji
Wysokość n.p.m.	do 3000m
Czas nagrzewania	1 minuta
Wibracje	10Hz do 50Hz, IEC 60068-2-6,
	2g
Wytrzymałość na wstrząsy	30gw trzech płaszczyznach

*Maksymalne temperatury pracy i przechowywania mieszczą się w kontekście typowych zmian dziennych i sezonowych.

5.8 Dane mechaniczne

 Wymiary szyny DIN 	76 x 100 mm (SZxW) zgodnie z
	DIN 43880
 Montaż 	Szyna DIN (DIN 43880)
 Stopień ochrony 	IP51 wewnątrz
 Materiał 	Samogasnące tworzywo (UL 94V-0

5.9 Deklaracja zgodności

<u>Deklaracja zgodności UE</u>

LUMEL S.A. ul. Sulechowska 1, 65-022 Zielona Góra, Polska

3-fazowy wielofunkcyjny licznik energii elektrycznej NMID30-2 z zakresem pomiarowym 3x230/400V AC i 0,5-10 (100)A, 50Hz, 3200imp/kWh odpowiada modelowi produkcji w certyfikacie badania EU numer **0120/SGS0424**. opisanemu

Wykazano spełnienie zasadniczych wymagań określonych w załączniku I oraz w odpowiednich załącznikach dotyczących poszczególnych urządzeń pomiarowych

Wymieniony powyżej licznik energii elektrycznej jest zgodny z odpowiednim unijnym prawodawstwem harmonizacyjnym i spełnia odpowiednie wymogi dyrektywy 2014/32/UE z następującymi

PN-EN 50470-1:2006, Urządzenia do pomiarów energii elektrycznej (prądu przemiennego) -Część 1: Wymagania ogólne, badania i warunki badań. Urządzenia do pomiarów (klas A, B i C).

PN-EN 50470-3:2006, Urządzenia do pomiarów energii elektrycznej (prądu przemiennego) - Część 3: Wymagania szczegółowe – Liczniki statyczne energii czynnej (klas A, B i C).

Niniejsza deklaracja zgodności wydana zostaje na wyłaczna odpowiedzialność producenta.

Podpisano w imieniu LUMEL S.A Podpis: RAD LABORATORIUM David

Stanowisko: Dyrektor R&D i Laboratorium

6 NMID30-2 V1

6.1 Tabliczka znamionowa

7 Wymiary

8.1 Sieć jednofazowa 2-przewodowa

8.2 Sieć trójfazowa 3-przewodowa

8.3 Sieć trójfazowa 4-przewodowa

8.4

Przed rozpoczęciem pracy wyłącz wszystkie źródła zasilania tego urządzenia i sprzętu, w którym jest zainstalowane. Zawsze używaj odpowiednio zatwierdzonego urządzenia wykrywającego napięcie, aby potwierdzić, że zasilanie jest wyłączone

8.5 Okablowanie i zabezpieczenie wejścia bezpiecznikiem

Wybierz właściwy typ bezpieczników i o zdolności wyłączania odpowiedniej do zasilania i zgodnie z lokalnymi przepisami.

W miarę możliwości należy zapewnić przełącznik lub wyłącznik umożliwiający izolację zasilania urządzenia. W podstawowych aplikacjach pomiarowych, przed jakąkolwiek konserwacją produktu, należy upewnić się, że zasilanie jest izolowane. Manipulowanie plombami produktu może być sprzeczne z lokalnymi przepisami.

8.6 Rozmiar przewodu / moment obrotowy

Schematy podłączeń (zależne od typu sieci, patrz pkt 8.1. do 8.3)		Ð
	Rozmiar kabla	Moment
B A G	przewód dwużyłowy linka	0.6 Nm
L1 L2 L3 N	25mm²	3.5 Nm

Po zakończeniu procedury wprowadzania naciśnij aby potwierdzić ustawienie i naciśnij wa aby powrócić do głównego menu konfiguracji.

47 CI R

Miernik zapewnia funkcję resetowania maksymalnej wartości demand prądu i mocy.

0,1 = 100 Wh/VArk1 = 1 kWh/kVArh10 = 10 kWh/kVArh100 = 100 kWh/kVArh Szerokość impulsu 200/100/60 mS.

5.5.2 Wyjście RS485 dla Modbus RTU

W przypadku Modbus RTU z menu ustawień można skonfigurować następujące parametry komunikacji RS485: Szybkość transmisji 2400, 4800, 9600, 19200, 38400 Parzystość: brak (domyślnie) / nieparzystość / parzystość Bity stopu 1 lub 2

Adres sieciowy RS485 nnn – 3-cyfrowy numer, od 1 do 247 Modbus[™] Kolejność Kolejność bajtów Hi/Lo jest ustawiana automatycznie na normalną lub odwróconą. Nie może być skonfigurowana z poziomu menu ustawień.

5.6 Warunki odniesienia dla wielkości wpływających

cości wpływające to zmienne, które w niewielkim stopniu wpływają na błędy pomiaru. Dokładność jest weryfikowana w wartości nominalnej (w ramach określonej tolerancji) tych warunków.

Nominalnie ±1%

Sinusoidalny (współczynnik

zniekształceń <0.05)

Strumień naziemny

- · Temperatura otoczenia 23°C ±1°C
- 50 lub 60Hz ±2% Przebieg fali weiścia Sinusoidalny (współczynnik zniekształceń <0.005) Przebieg fali wejścia

Nominalnie ±1%

- Napięcie zasilania Organización de la composición de l
- Przebieg fali zasilania pomocniczego (jeśli AC)
- Zewnętrzne pole magnetyczne

8 Schematy połączeń / Konserwacja

Przeczytaj uważnie niniejsze instrukcje i zapoznaj się z urządzeniem, zanim spróbujesz wykonać podłączenia. ZAGROŻENIE PORAŻENIEM PRĄDEM ELEKTRYCZNYM, WYBUCHEM LUB ŁUKIEM ELEKTRYCZNYM.

- Montażu i instalacji połączeń elektrycznych powinna dokonać osoba z uprawnieniami do montażu urządzeń elektrycznych. Stosuj odpowiednie środki ochrony osobistej
- Stosuj i przestrzegaj zasad bezpiecznej pracy przy instalacji elektrycznej, zgodnie z lokalnymi normami.
- Przed rozpoczęciem pracy wyłącz wszystkie źródła zasilania tego urządzenia i sprzętu, w którym jest zainstalowane.
- Zawsze używaj odpowiednio zatwierdzonego urządzenia wykrywającego napięcie, aby potwierdzić, że zasilanie jest wyłaczone
- Nie przekraczaj parametrów znamionowych urządzenia dla maksymalnych limitów.
- Nie używaj tego urządzenia do krytycznych zastosowań sterowania lub ochrony, w których bezpieczeństwo ludzi lub sprzętu zależy od działania obwodu sterowania.
- Nie pozwól, aby została przekroczona maksymalna wartość prądu znamionowego.
- Nieprzestrzeganie tych instrukcji grozi utratą życia lub poważnymi obrażeniami.

W zakresie bezpieczeństwa użytkowania licznik odpowiada wymaganiom normy PN-EN 61010-1:2010.

Wymagania dotyczące kompatybilności elektromagnetycznej zgodne z normą PN-EN 61326-1:2013

8.7 Konserwacja

Przód obudowy należy wycierać tylko suchą szmatką, używając minimalnego nacisku. W razie potrzeby wytrzyj tylną obudowę suchą szmatką.

Brak cześci do serwisowania przez użytkownika.

CE KOHS MID

NMID30-2_V1_07

LUMEL

LUMEL S.A. LUMEL S.A. ul. Słubicka 4, 65-127 Zielona Góra tel.: +48 68 45 75 100, fax +48 68 45 75 508 www.lumel.com pl

Informacja techniczna: tel.: (68) 45 75 140, 45 75 141, 45 75 142, 45 75 145, 45 75 146 e-mail: sprzedaz@lumel.com.pl

Realizacja zamówień: tel.: (68) 45 75 150, 45 75 151, 45 75 152, 45 75 153, 45 75 154, 45 75 155

Pracownia systemów automatyki: tel.: (68) 45 75 145, 45 75 145

Wzorcowanie: tel.: (68) 45 75 163 e-mail: laboratoriu